Сценарии и моделирование



Все увеличивающийся интерес финансовых институтов к исследованию поведения рыночной стоимости портфеля (например с целью оценки рыночного риска в виде VAR) во многом сдерживался следующими обстоятельствами:

  • Теоретические модели с одной стороны позволяют получить точные выражения для требуемых характеристик портфеля, но, с другой стороны, ограничения, сделанные при построении этой модели, настолько серьезны, что говорить об адекватности полученных результатов довольно сложно. Особенно это сказывается на портфелях, состоящих из трудоемких для теоретического анализа финансовых производных (опционы и их всевозможные модификации).
  • На первый взгляд вышеуказанного недостатка вроде бы лишен метод имитационного моделирования (метод Монте-Карло). Однако, применение его к оценки реальных портфелей требует настолько значительных вычислительных ресурсов, что говорить об оперативности слежения за изменениями характеристик портфеля просто не приходится.

Отсюда следует необходимость поиска аппроксимационных методов оценок портфелей опционов без имитационного моделирования или нахождение путей его значительного ускорения.

Одним из наиболее популярных методов ускорения имитационного моделирования является сценарный подход. Впервые метод сценариев был предложен F. Jamshidian и Yu Zhu (далее в тексте [J&Z ]) в 1996-1997 годах для моделирования и оценки VAR многовалютного портфеля опционов на бонды (LIBOR-based option portfolios) . Схема предложенного [J&Z] метода такова.

  1. На основе оцененных корреляционных связей между доходностями облигаций с разными сроками погашения методом главных компонент находятся три главных фактора. Традиционно их интерпретируют как:
    • Фактор 1 - параллельный сдвиг временной структуры доходностей (shift);
    • Фактор 2 - наклон временной структуры доходностей (twist);
    • Фактор 3 – изгиб временной структуры доходностей (в англоязычной литературе по исследованию финансовых рынков третий фактор носит поэтическое, но довольно меткое название butterfly – бабочка).

    Переход к факторам уже значительно снижает размерность будущего моделирования без значимой потери точности.

  2. Исследуются изменения факторов за выбранный период времени (ежедневные, ежечасные и т.п.) и к ним подбираются наиболее адекватные вероятностные распределения, которые будут в дальнейшем использоваться для имитационного моделирования приращения факторов.
  3. Теперь непосредственно о сценариях. В области значений приращений каждого фактора особым образом (в зависимости от свойств ранее полученных распределений) выбирается несколько точек. В работе [J&Z] их 7 для первого фактора, 5 для второго и 3 для третьего. Таким образом всего различных комбинаций (сценариев) для изменений трех  факторов будет 105 = 7 ´ 5 ´ 3.
  4. Для кажодого из 105 сценариев восстанавливается вся временная структура доходностей и вычисляется стоимость имеющегося в настоящий момент портфеля.
  5. В соответствии с выбранными вероятностными распределениями приращений факторов происходит имитационное моделирование. Стоимость портфеля при каждой итерации оценивается как линейная или квадратичная интерполяция значений стоимости портфеля в точках сценариев. При этом соответствующие весовые коэффициенты для интерполяции выбираются в зависимости от расстояния смоделированных приращений факторов от 105 точек сценариев.
  6. Далее смоделированные по сценариям стоимости портфеля используются для оценки требуемой характеристики портфеля: VAR , Shortfall и т.п.

Если исследуемый портфель содержит производные финансовые инструменты, такие как опционы, цена которых зависит от волатильности, то в этом случае следует предусмотреть сценарии и для волатильности (volatility). Число этих сценариев чаще всего берется равным 3 (большая волатильность, средняя и маленькая). Таким образом общее число сценариев повышается до 315 = 105 ´ 3.

Многочисленные эксперименты по оцениванию реальных портфелей, проведенные [J&Z] показали достаточную точность предложенного метода (не хуже, чем полномасштабное моделирование по методу Монте-Карло) при значительно меньших затратах вычислительных ресурсов.



ЛИТЕРАТУРА.

[J&Z].  F. Jamshidian and Y. Zhu. Scenario simulation: Theory and methodology. Journal of Finance and Stochastics, 1:43-68, 1997.